Browse Results

Showing 64,751 through 64,775 of 100,000 results

Magnetism and Synchrotron Radiation: Proceedings of the 6th International School “Synchrotron Radiation and Magnetism”, Mittelwihr (France), 2012 (Springer Proceedings in Physics #151)

by Eric Beaurepaire Hervé Bulou Loic Joly Fabrice Scheurer

Advances in the synthesis of new materials with often complex, nano-scaled structures require increasingly sophisticated experimental techniques that can probe the electronic states, the atomic magnetic moments and the magnetic microstructures responsible for the properties of these materials.At the same time, progress in synchrotron radiation techniques has ensured that these light sources remain a key tool of investigation, e.g. synchrotron radiation sources of the third generation are able to support magnetic imaging on a sub-micrometer scale.With the Sixth Mittelwihr School on Magnetism and Synchrotron Radiation the tradition of teaching the state-of-the-art on modern research developments continues and is expressed through the present set of extensive lectures provided in this volume. While primarily aimed at postgraduate students and newcomers to the field, this volume will also benefit researchers and lecturers actively working in the field.

Magnetism and the Electronic Structure of Crystals (Springer Series in Solid-State Sciences #98)

by Vladimir A. Gubanov Alexandr I. Liechtenstein Andrei V. Postnikov

The quantum theory of magnetism is a well-developed part of contemporary solid-state physics. The basic concepts of this theory can be used to describe such important effects as ferromagnetic ordering oflocalized magnetic moments in crystals and ferromagnetism of metals produced by essentially delocalized electrons, as well as various types of mutual orientation of atomic magnetic moments in solids possessing different crystal lattices and compositions. In recent years,the spin-fluctuational approach has been developed, which can overcome some contradictions between "localized" and "itinerant" models in the quantum mechanics of magnetic crystals. These are only some of the principal achievements of quantum magnetic theory. Almost all of the known magnetic properties of solids can be qualitat­ ively explained on the basis of its concepts. Further developments should open up the possibility of reliable quantitative description of magnetic properties of solids. Unfortunately, such calculations based on model concepts appear to be very complicated and, quite often, not definite enough. The rather small number of parameters of qualitative models are usually not able to take into account the very different types of magnetic interactions that appear in crystals. Further development of magnetic theory requires quantitative information on electronic wave function in the crystal considered. This can be proved by electronic band­ structure and cluster calculations. In many cases the latter can be a starting point for quantitative calculations of parameters used in magnetic theory.

Magnetism and Transport Phenomena in Spin-Charge Coupled Systems on Frustrated Lattices (Springer Theses)

by Hiroaki Ishizuka

In this thesis, magnetism and transport phenomena in spin-charge coupled systems on frustrated lattices are theoretically investigated, focusing on Ising-spin Kondo lattice models and using a combination of Monte Carlo simulation and other techniques such as variational calculations and perturbation theory. The emphasis of the study is on how the cooperation of spin-charge coupling and geometrical frustration affects the thermodynamic properties of the Kondo lattice models; it presents the emergence of various novel magnetic states, such as the partial disorder, loop-liquid, and spin-cluster states. The thesis also reveals that the magnetic and electronic states and transport properties of these models demonstrate peculiar features, such as Dirac half-metals, anomalous Hall insulators, and spin Hall effects. Study of novel magnetic states and exotic transport phenomena in Kondo lattice systems is a field experiencing rapid progress. The interplay of charge and spin degrees of freedom potentially gives rise to various novel phases and transport phenomena which are related to strongly correlated electrons, frustrated magnetism, and topological states of matter.The results presented in this thesis include numerical calculations that are free from approximations. Accordingly, they provide reliable reference values, both for studying magnetism and transports of related models and for experimentally exploring novel states of matter in metallic magnets.

Magnetism in the Solid State: An Introduction (Springer Series in Solid-State Sciences #134)

by Peter Mohn

This book presents a phenomenological approach to the field of solid state magnetism. It surveys the various theories and discusses their applicability in different types of materials. The text will be valuable as a text for graduate courses in magnetism and magnetic materials.

Magnetism in Topological Insulators

by Vladimir Litvinov

This book serves as a brief introduction to topological insulator physics and device applications. Particular attention is paid to the indirect exchange interaction mediated by near surface Dirac fermions and the spin texture this interaction favors. Along with useful information on semiconductor material systems, the book provides a theoretical background for most common concepts of TI physics. Readers will benefit from up to date information and methods needed to start working in TI physics, theory, experiment and device applications.Discusses inter-spin interaction via massless and massive Dirac excitations;Includes coverage of near-surface spin texture of the magnetic atoms as related to their mutual positions as well to their positions with respect to top and bottom surfaces in thin TI film;Describes non-RKKY oscillating inter-spin interaction as a signature of the topological state;Explains the origin of the giant Rashba interaction at quantum phase transition in TI-conventional semiconductors.

Magnetism: A Synchrotron Radiation Approach (Lecture Notes in Physics #697)

by Eric Beaurepaire Hervé Bulou Fabrice Scheurer Jean-Paul Kappler

This volume contains the edited lectures of the fourth Mittelwihr school on 'Magnetism and Synchrotron Radiation'. This series of events introduces graduate students and nonspecialists from related disciplines to the field of magnetism and magnetic materials with emphasis on synchrotron radiation as an experimental tool of investigation. These lecture notes present in particular the state of the art regarding the analysis of magnetic properties of new materials.

Magnetization Oscillations and Waves

by A.G. Gurevich G.A. Melkov

Written by two well-known researchers in the field, this useful reference takes an applied approach to high frequency processes including oscillations and waves in ferromagnets, antiferromagnets, and ferrimagnets. Problems evaluated include ferromagnetic and antiferromagnetic resonances, spin waves, nonlinear processes, and high frequency manifestations of interactions between the magnetic system and other systems of magnetically ordered substances as elastic waves and charge carriers.Unlike previous monographs on this subject, which are highly theoretical and written for very advanced readers, this book requires only an average college background in mathematics and experimental physics. It will be a valuable addition to the library of engineers and scientists in research and development for communications applications, and scientists interested in nonlinear magnetic phenomena. It also serves as an excellent introduction to the topic for newcomers in the field.Magnetization Oscillations and Waves not only presents results but also shows readers how to obtain them; most formulas are derived with so many details that readers can reproduce them. The book includes many summaries and tables and detailed references to significant work in the area by European researchers.

Magnetization Oscillations and Waves

by A.G. Gurevich G.A. Melkov

Written by two well-known researchers in the field, this useful reference takes an applied approach to high frequency processes including oscillations and waves in ferromagnets, antiferromagnets, and ferrimagnets. Problems evaluated include ferromagnetic and antiferromagnetic resonances, spin waves, nonlinear processes, and high frequency manifestations of interactions between the magnetic system and other systems of magnetically ordered substances as elastic waves and charge carriers.Unlike previous monographs on this subject, which are highly theoretical and written for very advanced readers, this book requires only an average college background in mathematics and experimental physics. It will be a valuable addition to the library of engineers and scientists in research and development for communications applications, and scientists interested in nonlinear magnetic phenomena. It also serves as an excellent introduction to the topic for newcomers in the field.Magnetization Oscillations and Waves not only presents results but also shows readers how to obtain them; most formulas are derived with so many details that readers can reproduce them. The book includes many summaries and tables and detailed references to significant work in the area by European researchers.

Magneto-Optical Imaging (NATO Science Series II: Mathematics, Physics and Chemistry #142)

by Tom H. Johansen Daniel V. Shantsev

Magneto-Optical Imaging has developed rapidly over the last decade to emerge as a leading technique to directly visualise the static and dynamic magnetic behaviour of materials, capable of following magnetic processes on the scale of centimeters to sub-microns and at timescales from hours to nanoseconds. The images are direct, real-time, and give space-resolved information, such as ultrafast magnetic processes and revealing the motion of individual vortices in superconductors. The book is a fully up-to-date report of the present status of the technique.

Magneto-Optics (Springer Series in Solid-State Sciences #128)

by Satoru Sugano Norimichi Kojima

Edited by two pioneers of magneto-optics, this book is designed to provide graduate students and researchers with an introductory state-of-the-art review of recent developments in this subject. The field encompasses important areas in solid-state physics, chemical physics and electrical engineering. The book deals with optical spectroscopy of paramagnetic, antiferromagnetic, and ferromagnetic materials, photo-induced magnetism and their applications to opto-electronics.

Magneto-Resistance for Crystals of Gallium

by François Willem Blom

Magneto-Science: Magnetic Field Effects on Materials: Fundamentals and Applications (Springer Series in Materials Science #89)

by M. Yamaguchi Y. Tanimoto

It is a dream of chemists and physicists to use magnetism, an important physical property of many materials, to control chemical and physical processes. With new manufacturing technologies for superconducting magnets, it has become possible to produce strong magnetic fields of 10 Tesla or more for applications in chemistry and physics. New magnetic phenomena, useful for processing functional molecules with improved quality, have been discovered recently. They open up exciting possibilities for studying and applying magnetic field effects in the chemical and physical processes of diamagnetic, paramagnetic and ferromagnetic materials. This volume will serve as a useful reference for specialists and non-specialists interested in this exciting new area of megneto-science.

Magnetocaloric Energy Conversion: From Theory to Applications (Green Energy and Technology)

by Andrej Kitanovski Jaka Tušek Urban Tomc Uroš Plaznik Marko Ožbolt Alojz Poredoš

This book provides the latest research on a new alternative form of technology, the magnetocaloric energy conversion. This area of research concerns magnetic refrigeration and cooling, magnetic heat pumping and magnetic power generation. The book’s systematic approach offers the theoretical basis of magnetocaloric energy conversion and its various sub domains and this is supported with the practical examples. Besides these fundamentals, the book also introduces potential solutions to engineering problems in magnetocalorics and to alternative technologies of solid state energy conversion. The aim of the book is therefore to provide engineers with the most up-to-date information and also to facilitate the understanding, design and construction of future magnetocaloric energy conversion devices. The magnetocaloric energy conversion represents an alternative to compressor based refrigerators and heat pumps. It is a serious alternative to power generation with low enthalpy heat sources. This green technology offers an opportunity to use environmentally friendly solid refrigerants and the potentially high energy efficiency follows the trends of future energy conversion devices. This book is intended for postgraduate students and researchers of refrigeration, heat pumping, power generation alternatives, heat regenerators and advanced heat transfer mechanisms.

Magnetocumulative Generators (Shock Wave and High Pressure Phenomena)

by Larry L. Altgilbers Mark D.J. Brown Igor Grishnaev Bucur M. Novac Ivor R. Smith Yuriy Tkach Iaroslav Tkach

A discussion of explosive pulsed power systems and their applications, this book consists of 7 chapters. The first five describe the basic physics of these sources and their ancillary equipment, based on a manual for training engineers in Russia. Chapter 6 is a description of codes and methodologies used at Loughborough University in the UK to build flux compressors, while Chapter 7 covers two specific applications: high power lasers and high power microwave sources. The book introduces all types of explosive power sources and their ancillary equipment, the procedures required to build them, and specific applications.

Magnetoelastic Acoustic Emission: Theory and Applications in Ferromagnetic Materials (Springer-AAS Acoustics Series)

by Valentyn Skalskyi Zinoviy Nazarchuk

The book presents theoretical and experimental studies to establish the relationship between volume jumps of the 90° domain wall in a ferromagnetic material and the magnitude of the half-space surface displacement caused by it. A method of evaluating the influence of the external magnetic field on the stress intensity factor at the tip of the crack-like defects in ferromagnets is discussed. The influence of hydrogen on the generation of magneto-elastic acoustic emission signals of ferromagnets is described. The features of magneto-elastic acoustic emission due to the presence of plastic deformation, structural changes, and volumetric damage in such structural materials are shown.

Magnetoelastic Waves (Engineering Materials)

by Gevorg Baghdasaryan Zaven Danoyan

This book highlights key methods for the mathematical modeling and solution of nonstationary dynamic problems in the theory of magnetoelasticity. It also reveals the richness of physical effects caused by the interaction of electromagnetic and mechanical phenomena in both conducting non-ferromagnetic and dielectric magnetically active deformable bodies. The studies are limited to elastic bodies considering small deformations. The book consists of two parts, the first of which derives the system of equations for describing magnetoelasticity, the surface conditions, and equations describing the perturbations behavior of non-ferromagnetic conducting media interacting with external magnetic fields. These equations are based on the main nonlinear equations and relations of mechanics and quasistatic electrodynamics of continuous media. On this basis, the book puts forward a number of qualitative and quantitative results, solving selected problems of magnetoelastic wave propagation. In turn, the second part considers surface waves in magnetostrictive and piezomagnetic media. It obtains the system of equations, surface conditions and state equations describing the perturbations behavior in magnetoactive ferromagnetic dielectric media interacting with external magnetic fields. Lastly, the book studies the excitations and propagation of new types of surface waves and oscillations in these media, conditioned by the magnetostrictive properties of the respective medium and its interaction with an external magnetic field.

Magnetoelectric Composites

by Mirza I. Bichurin

This book is dedicated to modeling and application of magnetoelectric (ME) effects in layered and bulk composites based on magnetostrictive and piezoelectric materials. Currently, numerous theoretical and experimental studies on ME composites are available but few on the development and research of instruments based on them. So far, only investigation of ME magnetic field sensors has been cited in the existing literature. However, these studies have finally resulted in the creation of low-frequency ME magnetic field sensors with parameters substantially exceeding the characteristics of Hall sensors. The book presents the authors’ many years of experience gained in ME composites and through creation of device models based on their studies. It describes low-frequency ME devices, such as current and position sensors and energy harvesters, and microwave ME devices, such as antennas, attenuators, filters, gyrators, and phase shifters.

Magnetoelectric Composites (Springer Series in Materials Science #201)

by Mirza I. Bichurin

This book is dedicated to modeling and application of magnetoelectric (ME) effects in layered and bulk composites based on magnetostrictive and piezoelectric materials. Currently, numerous theoretical and experimental studies on ME composites are available but few on the development and research of instruments based on them. So far, only investigation of ME magnetic field sensors has been cited in the existing literature. However, these studies have finally resulted in the creation of low-frequency ME magnetic field sensors with parameters substantially exceeding the characteristics of Hall sensors. The book presents the authors’ many years of experience gained in ME composites and through creation of device models based on their studies. It describes low-frequency ME devices, such as current and position sensors and energy harvesters, and microwave ME devices, such as antennas, attenuators, filters, gyrators, and phase shifters.

Magnetoelectric Response in Low-Dimensional Frustrated Spin Systems (Springer Theses)

by Shinichiro Seki

Electric control of magnetic properties, or inversely, magnetic control of dielectric properties in solids, is called a magnetoelectric effect and has long been investigated from the point of view of both fundamental physics and potential application. Magnetic and dielectric properties usually show minimal coupling, but it recently has been discovered that magnetically induced ferroelectricity in some spiral magnets enables remarkably large and versatile magnetoelectric responses. To stabilize such helimagnetism, magnetic frustration (competition between different magnetic interactions) is considered the key. In the present work, two of the most typical frustrated spin systems—triangular lattice antiferromagnets and edge-shared chain magnets—have systematically been investigated. Despite the crystallographic simplicity of target systems, rich magnetoelectric responses are ubiquitously observed. The current results published here offer a useful guideline in the search for new materials with unique magnetoelectric functions, and also provide an important basis for a deeper understanding of magnetoelectric phenomena in more complex systems.

Magnetoelectronic, Optical, and Thermoelectric Properties of Perovskite Materials (SpringerBriefs in Materials)

by Rachid Masrour

This book undertakes an extensive exploration of manganese-based compounds, such as T₁₋ₓSrxMnO₃ (T = La, Pr; x = 0.35, 0.25) using density functional theory and Monte Carlo simulations with a focus on understanding their electronic, magnetic, and magnetocaloric properties. Ba₁₋ₓSrxFeO₃ (x = 0, 0.2) is also studied via different approximations, offering a comparative perspective. In addition, the book looks at the influence of magnetism using Monte Carlo simulations, revealing crucial parameters and examining the GdCrO₃ system through DFT and Monte Carlo simulation, shedding light on recent experimental observations. Additionally, Monte Carlo studies investigate magnetic and magnetocaloric features of Sr₂FeMoO₆, La₂SrMn₂O₇ bilayer manganite, perovskite ferromagnetic thin films' surface effects, and SmFe₁₋ₓMnxO₃ perovskite. In essence, this book significantly advances our comprehension of magnetic and magnetocaloric phenomena across diverse materials and is well-suited for both experimentalists and computational researchers working in this field.

Magnetoelectronics of Microwaves and Extremely High Frequencies in Ferrite Films

by Alexander A. Ignatiev

This book is devoted to an entirely new direction of the magnetoelectronics of millimetric waves in layered structures containing epitaxial ferrite films. End of chapter references provide additional background information on the topics discussed.

Magnetoencephalography: From Signals to Dynamic Cortical Networks (Series In Bioengineering Ser.)

by Selma Supek Cheryl J. Aine

Magnetoencephalography (MEG) is an invaluable functional brain imaging technique that provides direct, real-time monitoring of neuronal activity necessary for gaining insight into dynamic cortical networks. Our intentions with this book are to cover the richness and transdisciplinary nature of the MEG field, make it more accessible to newcomers and experienced researchers and to stimulate growth in the MEG area. The book presents a comprehensive overview of MEG basics and the latest developments in methodological, empirical and clinical research, directed toward master and doctoral students, as well as researchers. There are three levels of contributions: 1) tutorials on instrumentation, measurements, modeling, and experimental design; 2) topical reviews providing extensive coverage of relevant research topics; and 3) short contributions on open, challenging issues, future developments and novel applications. The topics range from neuromagnetic measurements, signal processing and source localization techniques to dynamic functional networks underlying perception and cognition in both health and disease. Topical reviews cover, among others: development on SQUID-based and novel sensors, multi-modal integration (low field MRI and MEG; EEG and fMRI), Bayesian approaches to multi-modal integration, direct neuronal imaging, novel noise reduction methods, source-space functional analysis, decoding of brain states, dynamic brain connectivity, sensory-motor integration, MEG studies on perception and cognition, thalamocortical oscillations, fetal and neonatal MEG, pediatric MEG studies, cognitive development, clinical applications of MEG in epilepsy, pre-surgical mapping, stroke, schizophrenia, stuttering, traumatic brain injury, post-traumatic stress disorder, depression, autism, aging and neurodegeneration, MEG applications in cognitive neuropharmacology and an overview of the major open-source analysis tools.

Magnetofluiddynamics in Channels and Containers

by U. Müller L. Bühler

The book deals with the theme of incompressible flows of electrically conducting fluids in hydraulic components. The main content of the book is a result of engineering research associated with the design of liquid metal cooling systems for fusion reactors. The book is well suited to serve as a guide for utilising magnetohydrodynamic means in other engineering disciplines such as in material processing, metallurgical engineering and power engineering.

Magnetofluidodinamica: Lectures given at a Summer School of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Varenna (Como), Italy, September 28-October 6, 1962 (C.I.M.E. Summer Schools #28)

by G. Agostinelli

G. Agostinelli: Problemi speciali in magnetofluidodinamica.- G. Carini: Sul concetto di pressione in magnetofluidodinamica e nel caso di un fluido dielettrico in presenza di un campo elettrico.- V.C.A. Ferrario: Magneto-idrodinamica.- R. Nardini: 1. Su un caso particolare di onde magnetoacustiche. 2. Su un particolare campo magnetofluidodinamico sinusoidale in un mezzo viscoso.- A.G. Pacholczyk: Sulla instabilità gravitazionale e magnetogravitazionale di sistemi compressibili.- U. Schmidt: Wave propagation in M.F.D.- T. Zeuli: Su moti stazionari in magnetofluidodinamica.

Refine Search

Showing 64,751 through 64,775 of 100,000 results