Browse Results

Showing 85,851 through 85,875 of 100,000 results

Dynamic Thermal Analysis of Machines in Running State

by Lihui Wang

With the increasing complexity and dynamism in today’s machine design and development, more precise, robust and practical approaches and systems are needed to support machine design. Existing design methods treat the targeted machine as stationery. Analysis and simulation are mostly performed at the component level. Although there are some computer-aided engineering tools capable of motion analysis and vibration simulation etc., the machine itself is in the dry-run state. For effective machine design, understanding its thermal behaviours is crucial in achieving the desired performance in real situation.Dynamic Thermal Analysis of Machines in Running State presents a set of innovative solutions to dynamic thermal analysis of machines when they are put under actual working conditions. The objective is to better understand the thermal behaviours of a machine in real situation while at the design stage. The book has two major sections, with the first section presenting a broad-based review of the key areas of research in dynamic thermal analysis and simulation, and the second section presents an in-depth treatment of relevant methodology and algorithms, leading to better understanding of a machine in real situation.The book is a collection of novel ideas, taking into account the need for presenting intellectual challenges while appealing to a broad readership, including academic researchers, practicing engineers and managers, and graduate students. Given the essential role of modern machines in factory automation and quality assurance, a book dedicated to the topic of dynamic thermal analysis, and its practical applications to machine design would be beneficial to readers of all design and manufacturing sectors, from machine design to automotive engineering, in better understanding the present challenges and solutions, as well as future research directions in this important area.

Dynamic Systems with Time Delays: Stability and Control

by Ju H. Park Tae H. Lee Yajuan Liu Jun Chen

This book presents up-to-date research developments and novel methodologies to solve various stability and control problems of dynamic systems with time delays. First, it provides the new introduction of integral and summation inequalities for stability analysis of nominal time-delay systems in continuous and discrete time domain, and presents corresponding stability conditions for the nominal system and an applicable nonlinear system. Next, it investigates several control problems for dynamic systems with delays including H(infinity) control problemEvent-triggered control problems; Dynamic output feedback control problems; Reliable sampled-data control problems. Finally, some application topics covering filtering, state estimation, and synchronization are considered. The book will be a valuable resource and guide for graduate students, scientists, and engineers in the system sciences and control communities.

Dynamic Systems Models: New Methods of Parameter and State Estimation

by Josif A. Boguslavskiy

This monograph is an exposition of a novel method for solving inverse problems, a method of parameter estimation for time series data collected from simulations of real experiments. These time series might be generated by measuring the dynamics of aircraft in flight, by the function of a hidden Markov model used in bioinformatics or speech recognition or when analyzing the dynamics of asset pricing provided by the nonlinear models of financial mathematics.Dynamic Systems Models demonstrates the use of algorithms based on polynomial approximation which have weaker requirements than already-popular iterative methods. Specifically, they do not require a first approximation of a root vector and they allow non-differentiable elements in the vector functions being approximated. The text covers all the points necessary for the understanding and use of polynomial approximation from the mathematical fundamentals, through algorithm development to the application of the method in, for instance, aeroplane flight dynamics or biological sequence analysis. The technical material is illustrated by the use of worked examples and methods for training the algorithms are included.Dynamic Systems Models provides researchers in aerospatial engineering, bioinformatics and financial mathematics (as well as computer scientists interested in any of these fields) with a reliable and effective numerical method for nonlinear estimation and solving boundary problems when carrying out control design. It will also be of interest to academic researchers studying inverse problems and their solution.

Dynamic Systems for Everyone: Understanding How Our World Works

by Asish Ghosh

This book is a study of the interactions between different types of systems, their environment, and their subsystems. The author explains how basic systems principles are applied in engineered (mechanical, electromechanical, etc.) systems and then guides the reader to understand how the same principles can be applied to social, political, economic systems, as well as in everyday life. Readers from a variety of disciplines will benefit from the understanding of system behaviors and will be able to apply those principles in various contexts. The book includes many examples covering various types of systems. The treatment of the subject is non-mathematical, and the book considers some of the latest concepts in the systems discipline, such as agent-based systems, optimization, and discrete events and procedures.

Dynamic Systems for Everyone: Understanding How Our World Works

by Asish Ghosh

Systems are everywhere and we are surrounded by them. We are a complex amalgam of systems that enable us to interact with an endless array of external systems in our daily lives. They are electrical, mechanical, social, biological, and many other types that control our environment and our well-being. By appreciating how these systems function, will broaden our understanding of how our world works. Readers from a variety of disciplines will benefit from the knowledge of system behavior they will gain from this book and will be able to apply those principles in various contexts. The treatment of the subject is non-mathematical, and the book considers some of the latest concepts in the systems discipline, such as agent based systems, optimization, and discrete events and procedures. The diverse range of examples provided in this book, will allow readers to:Apply system knowledge at work and in daily life without deep mathematical knowledge;Build models and simulate system behaviors on a personal computer; Optimize systems in many different ways;Reduce or eliminate unintended consequences;Develop a holistic world view .This book will enable readers to not only better interact with the systems in their professional and daily lives, but also allow them to develop and evaluate them for their effectiveness in achieving their designed purpose.Comments from Reviewers: “This is a marvelously well written introduction to Systems Thinking and System Dynamics - I like it because it introduces Systems Thinking with meaningful examples, which everyone should be able to readily connect” - Gene Bellinger, Organizational theorist, systems thinker, and consultant, Director Systems Thinking World “Excellent book ...very well written. Mr. Ghosh's world view of system thinking is truly unique” - Peter A. Rizzi, Professor Emeritus, University of Massachusetts Dartmouth “A thorough reading of the book provides an interesting way to view many problems in our society” –Bradford T. Stokes, Poppleton Chair and Professor Emeritus, The Ohio State University College of Medicine “This is a very good and very readable book that is a must read for any person involved in systems theory in any way - which may actually include just about everyone” - Peter G. Martin, Vice President Business Value Consulting, Schneider Electric

Dynamic System Reliability: Modeling and Analysis of Dynamic and Dependent Behaviors (Quality and Reliability Engineering Series)

by Liudong Xing Gregory Levitin Chaonan Wang

Offers timely and comprehensive coverage of dynamic system reliability theory This book focuses on hot issues of dynamic system reliability, systematically introducing the reliability modeling and analysis methods for systems with imperfect fault coverage, systems with function dependence, systems subject to deterministic or probabilistic common-cause failures, systems subject to deterministic or probabilistic competing failures, and dynamic standby sparing systems. It presents recent developments of such extensions involving reliability modelling theory, reliability evaluation methods, and features numerous case studies based on real-world examples. The presented dynamic reliability theory can enable a more accurate representation of actual complex system behavior, thus more effectively guiding the reliable design of real-world critical systems. Dynamic System Reliability: Modelling and Analysis of Dynamic and Dependent Behaviors begins by describing the evolution from the traditional static reliability theory to the dynamic system reliability theory, and provides a detailed investigation of dynamic and dependent behaviors in subsequent chapters. Although written for those with a background in basic probability theory and stochastic processes, the book includes a chapter reviewing the fundamentals that readers need to know in order to understand contents of other chapters which cover advanced topics in reliability theory and case studies. The first book systematically focusing on dynamic system reliability modelling and analysis theory Provides a comprehensive treatment on imperfect fault coverage (single-level/multi-level or modular), function dependence, common cause failures (deterministic and probabilistic), competing failures (deterministic and probabilistic), and dynamic standby sparing Includes abundant illustrative examples and case studies based on real-world systems Covers recent advances in combinatorial models and algorithms for dynamic system reliability analysis Offers a rich set of references, providing helpful resources for readers to pursue further research and study of the topics Dynamic System Reliability: Modelling and Analysis of Dynamic and Dependent Behaviors is an excellent book for undergraduate and graduate students, and engineers and researchers in reliability and related disciplines.

Dynamic System Reliability: Modeling and Analysis of Dynamic and Dependent Behaviors (Quality and Reliability Engineering Series)

by Liudong Xing Gregory Levitin Chaonan Wang

Offers timely and comprehensive coverage of dynamic system reliability theory This book focuses on hot issues of dynamic system reliability, systematically introducing the reliability modeling and analysis methods for systems with imperfect fault coverage, systems with function dependence, systems subject to deterministic or probabilistic common-cause failures, systems subject to deterministic or probabilistic competing failures, and dynamic standby sparing systems. It presents recent developments of such extensions involving reliability modelling theory, reliability evaluation methods, and features numerous case studies based on real-world examples. The presented dynamic reliability theory can enable a more accurate representation of actual complex system behavior, thus more effectively guiding the reliable design of real-world critical systems. Dynamic System Reliability: Modelling and Analysis of Dynamic and Dependent Behaviors begins by describing the evolution from the traditional static reliability theory to the dynamic system reliability theory, and provides a detailed investigation of dynamic and dependent behaviors in subsequent chapters. Although written for those with a background in basic probability theory and stochastic processes, the book includes a chapter reviewing the fundamentals that readers need to know in order to understand contents of other chapters which cover advanced topics in reliability theory and case studies. The first book systematically focusing on dynamic system reliability modelling and analysis theory Provides a comprehensive treatment on imperfect fault coverage (single-level/multi-level or modular), function dependence, common cause failures (deterministic and probabilistic), competing failures (deterministic and probabilistic), and dynamic standby sparing Includes abundant illustrative examples and case studies based on real-world systems Covers recent advances in combinatorial models and algorithms for dynamic system reliability analysis Offers a rich set of references, providing helpful resources for readers to pursue further research and study of the topics Dynamic System Reliability: Modelling and Analysis of Dynamic and Dependent Behaviors is an excellent book for undergraduate and graduate students, and engineers and researchers in reliability and related disciplines.

Dynamic System Reconfiguration in Heterogeneous Platforms: The MORPHEUS Approach (Lecture Notes in Electrical Engineering #40)

by Michael Hübner Nikolaos Voros Alberto Rosti

Dynamic System Reconfiguration in Heterogeneous Platforms defines the MORPHEUS platform that can join the performance density advantage of reconfigurable technologies and the easy control capabilities of general purpose processors. It consists of a System-on-Chip made of a scalable system infrastructure hosting heterogeneous reconfigurable accelerators, providing dynamic reconfiguration capabilities and data-stream management capabilities.

Dynamic System Modelling and Analysis with MATLAB and Python: For Control Engineers (IEEE Press Series on Control Systems Theory and Applications)

by Jongrae Kim

Dynamic System Modeling & Analysis with MATLAB & Python A robust introduction to the advanced programming techniques and skills needed for control engineering In Dynamic System Modeling & Analysis with MATLAB & Python: For Control Engineers, accomplished control engineer Dr. Jongrae Kim delivers an insightful and concise introduction to the advanced programming skills required by control engineers. The book discusses dynamic systems used by satellites, aircraft, autonomous robots, and biomolecular networks. Throughout the text, MATLAB and Python are used to consider various dynamic modeling theories and examples. The author covers a range of control topics, including attitude dynamics, attitude kinematics, autonomous vehicles, systems biology, optimal estimation, robustness analysis, and stochastic system. An accompanying website includes a solutions manual as well as MATLAB and Python example code. Dynamic System Modeling & Analysis with MATLAB & Python: For Control Engineers provides readers with a sound starting point to learning programming in the engineering or biology domains. It also offers: A thorough introduction to attitude estimation and control, including attitude kinematics and sensors and extended Kalman filters for attitude estimation Practical discussions of autonomous vehicles mission planning, including unmanned aerial vehicle path planning and moving target tracking Comprehensive explorations of biological network modeling, including bio-molecular networks and stochastic modeling In-depth examinations of control algorithms using biomolecular networks, including implementation Dynamic System Modeling & Analysis with MATLAB & Python: For Control Engineers is an indispensable resource for advanced undergraduate and graduate students seeking practical programming instruction for dynamic system modeling and analysis using control theory.

Dynamic System Modelling and Analysis with MATLAB and Python: For Control Engineers (IEEE Press Series on Control Systems Theory and Applications)

by Jongrae Kim

Dynamic System Modeling & Analysis with MATLAB & Python A robust introduction to the advanced programming techniques and skills needed for control engineering In Dynamic System Modeling & Analysis with MATLAB & Python: For Control Engineers, accomplished control engineer Dr. Jongrae Kim delivers an insightful and concise introduction to the advanced programming skills required by control engineers. The book discusses dynamic systems used by satellites, aircraft, autonomous robots, and biomolecular networks. Throughout the text, MATLAB and Python are used to consider various dynamic modeling theories and examples. The author covers a range of control topics, including attitude dynamics, attitude kinematics, autonomous vehicles, systems biology, optimal estimation, robustness analysis, and stochastic system. An accompanying website includes a solutions manual as well as MATLAB and Python example code. Dynamic System Modeling & Analysis with MATLAB & Python: For Control Engineers provides readers with a sound starting point to learning programming in the engineering or biology domains. It also offers: A thorough introduction to attitude estimation and control, including attitude kinematics and sensors and extended Kalman filters for attitude estimation Practical discussions of autonomous vehicles mission planning, including unmanned aerial vehicle path planning and moving target tracking Comprehensive explorations of biological network modeling, including bio-molecular networks and stochastic modeling In-depth examinations of control algorithms using biomolecular networks, including implementation Dynamic System Modeling & Analysis with MATLAB & Python: For Control Engineers is an indispensable resource for advanced undergraduate and graduate students seeking practical programming instruction for dynamic system modeling and analysis using control theory.

Dynamic Surface Control of Uncertain Nonlinear Systems: An LMI Approach (Communications and Control Engineering)

by Bongsob Song J. Karl Hedrick

Although the problem of nonlinear controller design is as old as that of linear controller design, the systematic design methods framed in response are more sparse. Given the range and complexity of nonlinear systems, effective new methods of control design are therefore of significant importance. Dynamic Surface Control of Uncertain Nonlinear Systems provides a theoretically rigorous and practical introduction to nonlinear control design. The convex optimization approach applied to good effect in linear systems is extended to the nonlinear case using the new dynamic surface control (DSC) algorithm developed by the authors. A variety of problems – DSC design, output feedback, input saturation and fault-tolerant control among them – are considered. The inclusion of applications material demonstrates the real significance of the DSC algorithm, which is robust and easy to use, for nonlinear systems with uncertainty in automotive and robotics. Written for the researcher and graduate student of nonlinear control theory, this book will provide the applied mathematician and engineer alike with a set of powerful tools for nonlinear control design. It will also be of interest to practitioners working with a mechatronic systems in aerospace, manufacturing and automotive and robotics, milieux.

Dynamic Substructures, Volume 4: Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics 2022 (Conference Proceedings of the Society for Experimental Mechanics Series)

by Matthew Allen Walter D’Ambrogio Dan Roettgen

Dynamics of Coupled Structures, Volume 4: Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics, 2022, the fourth volume of nine from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of the Dynamics of Coupled Structures, including papers on:Transfer Path AnalysisBlocked Forces and Experimental TechniquesReal-Time Hybrid Substructuring and Uncertainty Quantification in SubstructuringNonlinear Substructuring

Dynamic Substructures, Volume 4: Proceedings of the 41st IMAC, A Conference and Exposition on Structural Dynamics 2023 (Conference Proceedings of the Society for Experimental Mechanics Series)

by Matthew Allen Walter D’Ambrogio Dan Roettgen

Dynamics of Coupled Structures, Volume 4: Proceedings of the 41st IMAC, A Conference and Exposition on Structural Dynamics, 2023, the fourth volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of the Dynamics of Coupled Structures, including papers on: Real-Time/Hybrid Substructuring Transfer Path Analysis Frequency Based Substructuring The Substructuring Benchmark Challenge New Challenges & Approaches in Substructuring

Dynamic Substructures, Volume 4: Proceedings of the 39th IMAC, A Conference and Exposition on Structural Dynamics 2021 (Conference Proceedings of the Society for Experimental Mechanics Series)

by Matthew S. Allen Walter D’Ambrogio Dan Roettgen

Dynamic Substructures, Volume 4: Proceedings of the 39th IMAC, A Conference and Exposition on Structural Dynamics, 2021, the fourth volume of nine from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of the Dynamics of Coupled Structures, including papers on:Methods for Dynamic Substructures Applications for Dynamic SubstructuresInterfaces & SubstructuringFrequency Based Substructuring Transfer Path Analysis

Dynamic Substructures, Volume 4: Proceedings of the 38th IMAC, A Conference and Exposition on Structural Dynamics 2020 (Conference Proceedings of the Society for Experimental Mechanics Series)

by Andreas Linderholt Matt Allen Walter D’Ambrogio

Dynamics of Coupled Structures, Volume 4: Proceedings of the 38th IMAC, A Conference and Exposition on Structural Dynamics, 2020, the fourth volume of eight from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of the Dynamics of Coupled Structures, including papers on:Methods for Dynamic Substructures Applications for Dynamic SubstructuresInterfaces & SubstructuringFrequency Based Substructuring Transfer Path Analysis

Dynamic Substructures, Volume 4: Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics 2019 (Conference Proceedings of the Society for Experimental Mechanics Series)

by Andreas Linderholt Matthew S. Allen Randall L. Mayes Daniel Rixen

Dynamics of Coupled Structures, Volume 4: Proceedings of the 37th IMAC, A Conference and Exposition on Structural Dynamics, 2019, the fourth volume of eight from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of the Dynamics of Coupled Structures, including papers on: Methods for Dynamic Substructures Applications for Dynamic SubstructuresInterfaces & SubstructuringFrequency Based Substructuring Transfer Path Analysis

Dynamic Studies Through Control of Relaxation in NMR Spectroscopy (Springer Theses)

by Nicola Salvi

Nicola Salvi's thesis offers a remarkably cogent view of highly sophisticated NMR methods. Salvi developed these methods in order to characterize the amplitudes and frequency ranges of local motions in biomolecules such as proteins. These local motions play an essential role since they can explain many of the remarkable properties of proteins and enable them to carry out all sorts of vital functions, from enzymatic catalysis to intermolecular recognition and signalling in cells. Salvi's work has led to numerous publications in high-impact journals.

Dynamic Structure of Detonation in Gaseous and Dispersed Media (Fluid Mechanics and Its Applications #5)

by A. A. Borissov

Of late the demands of industry in creating new composite and functional materials with present properties stimulated an increased interest to the investigation of processes which occur in the detonation technologies of complex chemical composition with an additive of disperse particles. The collection includes a series of papers presented at the 3d International Conference "Lavrentyev Readings on Mathematics, Mechanics, and Physics" (Novosibirsk, 1990),was held by the Hydrodynamics Institute under the support of the Presidium of the Siberian Branch of the USSR Academy of Sciences to stimulate the international cooperation of the leading international centers. In the framework of this Conference the Round Table seminar was held by Prof. A. Borissov and Prof. V. Mi trofanov devoted to "Dynamic Structure of Detonation in Gaseous and Dispersed Media". The idea to hold such Round Table was supported by Chairman of Organizing Committee academician Prof. V.Titov from Hydrodynamics Institute, and academician Prof. V. Nakoryakov and also his Institute of Thermophysics. The main ideas discussed at the Round Table were presented in the form of papers which reflected present situation of the problem of dynamic structure of the detonation waves in gaseous and dispersed media. The basic experimental facts concerning of complicated mul ti­ dimensional non-stationary structure both of the detonation wave and its front surface, generation of the cell structure, the effect of transverse waves, obstacles, channel geometry etc. on the transition from dynamic regime to stationary structure are represented in the fist three papers.

Dynamic Stiffness and Substructures

by Andrew Y.T. Leung

Dynamic Stiffness and Substructures models a complex dynamic system and offers a solution to the advanced dynamical problem associated with the effects of wind and earthquakes on structures. Since the system matrices are inevitably frequency dependant, those are exclusively considered in this publication. The relation between the frequency matrices by the Leung's theorem is most important in the development of efficient algorithms for the natural modes. This new approach was developed by the author over the past 15 years. It offers practising engineers and researchers a wide choice for structural modelling and analysis. Abundant numerical examples enable the reader to understand the theorem and to apply the methods.

Dynamic Stability of Suddenly Loaded Structures

by George J. Simitses

Dynamic instability or dynamic buckling as applied to structures is a term that has been used to describe many classes of problems and many physical phenomena. It is not surprising, then, that the term finds several uses and interpretations among structural mechanicians. Problems of parametric resonance, follower-force, whirling of rotating shafts, fluid-solid interaction, general response of structures to dynamic loads, and several others are all classified under dynamic instability. Many analytical and experimental studies of such problems can be found in several books as either specialized topics or the main theme. Two such classes, parametric resonance and stability of nonconservative systems under static loads (follower-force problems), form the main theme of two books by V. V. Bolotin, which have been translated from Russian. Moreover, treatment of aero elastic instabilities can be found in several textbooks. Finally, analytical and experimental studies of structural elements and systems subjected to intense loads (of very short duration) are the focus of the recent monograph by Lindberg and Florence. The first chapter attempts to classify the various "dynamic instability" phenomena by taking into consideration the nature of the cause, the character of the response, and the history of the problem. Moreover, the various concepts and methodologies as developed and used by the various investigators for estimating critical conditions for suddenly loaded elastic systems are fully described. Chapter 2 demonstrates the concepts and criteria for dynamic stability through simple mechanical models with one and two degrees of freedom.

Dynamic Stability of Columns under Nonconservative Forces: Theory and Experiment (Solid Mechanics and Its Applications #255)

by Yoshihiko Sugiyama Mikael A. Langthjem Kazuo Katayama

This book treats dynamic stability of structures under nonconservative forces. it is not a mathematics-based, but rather a dynamics-phenomena-oriented monograph, written with a full experimental background. Starting with fundamentals on stability of columns under nonconservative forces, it then deals with the divergence of Euler’s column under a dead (conservative) loading from a view point of dynamic stability. Three experiments with cantilevered columns under a rocket-based follower force are described to present the verifiability of nonconservative problems of structural stability. Dynamic stability of columns under pulsating forces is discussed through analog experiments, and by analytical and experimental procedures together with related theories. Throughout the volume the authors retain a good balance between theory and experiments on dynamic stability of columns under nonconservative loading, offering a new window to dynamic stability of structures, promoting student- and scientist-friendly experiments.

Dynamic Stability of Bodies Containing Fluid (Applied Physics and Engineering #6)

by N.N. Moiseyev V.V. Rumyantsev

The dynamics of bodies containing fluids is a subject of long-standing im­ portance in many technical applications. The stability of motion of such bodies, in particular, has been the subject of study by Soviet engineers and applied mathematicians who have brought their fuH powers of analysis to bear on the problem, and have succeeded in developing a very weH-founded body of theory. It is difficult to find a more striking example anywhere of the application of the classical methods of analytical mechanics, together with more modern concepts of stability analysis, in such a comprehensive and elegent form as that presented by Profs. Moiseyev and Rumyantsev. Therefore, it is highly significant that this recent monograph has been trans­ lated and made available to the English-speaking community. H. NORMAN ABRAMSON San Antonio July, 1967 v Foreword During the last 15-20 years, problems of dynamics of rigid bodies with fluid-filled cavities have increasingly attracted the attention of scientists.

Dynamic Stability and Control of Tripped and Untripped Vehicle Rollover (Synthesis Lectures on Advances in Automotive Technology)

by Zhilin  Jin Bin  Li Jingxuan  Li

Vehicle rollover accidents have been a serious safety problem for the last three decades. Although rollovers are a small percentage of all traffic accidents, they do account for a large proportion of severe and fatal injuries. Specifically, some large passenger vehicles, such as large vans, pickup trucks, and sport utility vehicles, are more prone to rollover accidents with a high center of gravity (CG) and narrow track width. Vehicle rollover accidents may be grouped into two categories: tripped and untripped rollovers. A tripped rollover commonly occurs when a vehicle skids and digs its tires into soft soil or hits a tripping mechanism such as a curb with a sufficiently large lateral velocity. On the other hand, the untripped rollover is induced by extreme maneuvers during critical driving situations, such as excessive speed during cornering, obstacle avoidance, and severe lane change maneuver. In these situations, the forces at the tire-road contact point are large enough to cause the vehicle to roll over. Furthermore, vehicle rollover may occur due to external disturbances such as side-wind and steering excitation. Therefore, it is necessary to investigate the dynamic stability and control of tripped and untripped vehicle rollover so as to avoid vehicle rollover accidents. In this book, different dynamic models are used to describe the vehicle rollover under both untripped and special tripped situations. From the vehicle dynamics theory, rollover indices are deduced, and the dynamic stabilities of vehicle rollover are analyzed. In addition, some active control strategies are discussed to improve the anti-rollover performance of the vehicle.

Dynamic Stability and Bifurcation in Nonconservative Mechanics (CISM International Centre for Mechanical Sciences #586)

by Davide Bigoni Oleg Kirillov

The book offers a unified view on classical results and recent advances in the dynamics of nonconservative systems. The theoretical fundamentals are presented systematically and include: Lagrangian and Hamiltonian formalism, non-holonomic constraints, Lyapunov stability theory, Krein theory of spectra of Hamiltonian systems and modes of negative and positive energy, anomalous Doppler effect, reversible systems, sensitivity analysis of non-self-adjoint operators, dissipation-induced instabilities, local and global instabilities. They are applied to engineering situations such as the coupled mode flutter of wings, flags and pipes, flutter in granular materials, piezoelectric mechanical metamaterials, wave dynamics of infinitely long structures, radiative damping, stability of high-speed trains, experimental realization of follower forces, soft-robot locomotion, wave energy converters, friction-induced instabilities, brake squeal, non-holonomic sailing, dynamics of moving continua, and stability of bicycles and walking robots. The book responds to a demand in the modern theory of nonconservative systems coming from the growing number of scientific and engineering disciplines including physics, fluid and solids mechanics, fluid-structure interactions, and modern multidisciplinary research areas such as biomechanics, micro- and nanomechanics, optomechanics, robotics, and material science. It is targeted at both young and experienced researchers and engineers working in fields associated with the dynamics of structures and materials. The book will help to get a comprehensive and systematic knowledge on the stability, bifurcations and dynamics of nonconservative systems and establish links between approaches and methods developed in different areas of mechanics and physics and modern applied mathematics.

Dynamic Stabilisation of the Biped Lucy Powered by Actuators with Controllable Stiffness (Springer Tracts in Advanced Robotics #63)

by Bram Vanderborght

This book reports on the developments of the bipedal walking robot Lucy. Special about it is that the biped is not actuated with the classical electrical drives but with pleated pneumatic artificial muscles. In an antagonistic setup of such muscles both the torque and the compliance are controllable. From human walking there is evidence that joint compliance plays an important role in energy efficient walking and running. Moreover pneumatic artificial muscles have a high power to weight ratio and can be coupled directly without complex gearing mechanism, which can be beneficial towards legged mechanisms. Additionally, they have the capability of absorbing impact shocks and store and release motion energy. This book gives a complete description of Lucy: the hardware, the electronics and the software. A hybrid simulation program, combining the robot dynamics and muscle/valve thermodynamics, has been written to evaluate control strategies before implementing them in the real biped.

Refine Search

Showing 85,851 through 85,875 of 100,000 results