Browse Results

Showing 53,826 through 53,850 of 54,517 results

Advanced Higher Maths Practice Question Book (Sqa Practice Question Book Ser.)

by Craig Lowther Graeme Nolan Leckie

Exam Board: SQA Level: Advanced Higher Subject: Maths First Teaching: 2014, First Exam: 2015 Masses of practice questions for every topic on the curriculum. Essential extra questions for every topic on the curriculum, to reinforce learning and build exam confidence. It can be used either alongside the N5 Maths Student Book or as a flexible standalone resource - for homework, independent study or exam practice. Included in this book: Questions for every topic on the curriculum, with more of the tricky ones Example answers with workings-out help explain difficult concepts Hints and tips throughout give practical advice about the different kinds of question Answers can be downloaded from www.collins.co.uk/pages/scottish-curriculum-free-resources

Advanced H∞ Control: Towards Nonsmooth Theory and Applications (Systems & Control: Foundations & Applications)

by Yury V. Orlov Luis T. Aguilar

This compact monograph is focused on disturbance attenuation in nonsmooth dynamic systems, developing an H∞ approach in the nonsmooth setting. Similar to the standard nonlinear H∞ approach, the proposed nonsmooth design guarantees both the internal asymptotic stability of a nominal closed-loop system and the dissipativity inequality, which states that the size of an error signal is uniformly bounded with respect to the worst-case size of an external disturbance signal. This guarantee is achieved by constructing an energy or storage function that satisfies the dissipativity inequality and is then utilized as a Lyapunov function to ensure the internal stability requirements.Advanced H∞ Control is unique in the literature for its treatment of disturbance attenuation in nonsmooth systems. It synthesizes various tools, including Hamilton–Jacobi–Isaacs partial differential inequalities as well as Linear Matrix Inequalities. Along with the finite-dimensional treatment, the synthesis is extended to infinite-dimensional setting, involving time-delay and distributed parameter systems. To help illustrate this synthesis, the book focuses on electromechanical applications with nonsmooth phenomena caused by dry friction, backlash, and sampled-data measurements. Special attention is devoted to implementation issues.Requiring familiarity with nonlinear systems theory, this book will be accessible to graduate students interested in systems analysis and design, and is a welcome addition to the literature for researchers and practitioners in these areas.

Advanced Graph Theory

by Santosh Kumar Yadav

The present book is based on the curriculum of undergraduate and postgraduate courses of universities in India and abroad. Every effort is made to present the various topics in the theory of graphs in a logical manner with adequate historical background and include suitable figures to illustrate concepts and results ideally. The formidable exercises, neither easy nor straightforward, are bold faced and highlighted. The theory portion of each chapter is studied thoroughly as it helps solve many of the problems with comparative ease. Selected material from this book is used for a semester course on graph theory, while the entire book serves for a whole session course.

Advanced Geostatistics in the Mining Industry: Proceedings of the NATO Advanced Study Institute held at the Istituto di Geologia Applicata of the University of Rome, Italy, 13–25 October 1975 (Nato Science Series C: #24)

by M. Guarascio C. J. Huybrechts M. David

When Prof. Hatheron was asked to delineate the history of geostatistics, he objected that such discipline is still too "young" to be treated from a historical point of view. The more and more increasing practical applications requiring newer and newer methodologies would rather suggest the necessity of empha­ sizing the steps taken and the results obtained up to now. The reason of certain epistemological choices as well as the difficul­ ties and success in establishing a dialogue with the people most likely to benefit from the results of geostatistics are necessary premises to understand the present status of this discipline. The human bearing of characters of the persons that have introduc­ ed and studied this science blending theory with economic prac­ tics is a factor playing a not inconsiderable role in the develop­ ment of geostatistics. These concepts were the guidelines in organizing the ASI-Geo­ stat 75. Canada, France and Italy are three different situations in an industrial and academic context, especially in the interac­ tion between these fields. Yet it was our impression that the time had come to assemble experts, scholars, and other people in­ terested in geostatistics in order to evaluate its present posi­ tion on various levels in the different countries and to discuss its future prospects. Prof. Hatheron and Hr. Krige as well as other prominent people were of the same opinion.

Advanced Geometrical Optics (Progress in Optical Science and Photonics #4)

by Psang Dain Lin

This book computes the first- and second-order derivative matrices of skew ray and optical path length, while also providing an important mathematical tool for automatic optical design. This book consists of three parts. Part One reviews the basic theories of skew-ray tracing, paraxial optics and primary aberrations – essential reading that lays the foundation for the modeling work presented in the rest of this book. Part Two derives the Jacobian matrices of a ray and its optical path length. Although this issue is also addressed in other publications, they generally fail to consider all of the variables of a non-axially symmetrical system. The modeling work thus provides a more robust framework for the analysis and design of non-axially symmetrical systems such as prisms and head-up displays. Lastly, Part Three proposes a computational scheme for deriving the Hessian matrices of a ray and its optical path length, offering an effective means of determining an appropriate search direction when tuning the system variables in the system design process.

Advanced Game Development with Programmable Graphics Hardware

by Alan Watt

Written for game programmers and developers, this book covers GPU techniques and supporting applications that are commonly used in games and similar real-time 3D applications. The authors describe the design of programs and systems that can be used to implement games and other applications whose requirements are to render real-time animation sequen

Advanced Fuzzy Systems Design and Applications (Studies in Fuzziness and Soft Computing #112)

by Yaochu Jin

Fuzzy rule systems have found a wide range of applications in many fields of science and technology. Traditionally, fuzzy rules are generated from human expert knowledge or human heuristics for relatively simple systems. In the last few years, data-driven fuzzy rule generation has been very active. Compared to heuristic fuzzy rules, fuzzy rules generated from data are able to extract more profound knowledge for more complex systems. This book presents a number of approaches to the generation of fuzzy rules from data, ranging from the direct fuzzy inference based to neural net­ works and evolutionary algorithms based fuzzy rule generation. Besides the approximation accuracy, special attention has been paid to the interpretabil­ ity of the extracted fuzzy rules. In other words, the fuzzy rules generated from data are supposed to be as comprehensible to human beings as those generated from human heuristics. To this end, many aspects of interpretabil­ ity of fuzzy systems have been discussed, which must be taken into account in the data-driven fuzzy rule generation. In this way, fuzzy rules generated from data are intelligible to human users and therefore, knowledge about unknown systems can be extracted.

Advanced Functional Evolution Equations and Inclusions (Developments in Mathematics #39)

by Saïd Abbas Mouffak Benchohra

This book presents up-to-date results on abstract evolution equations and differential inclusions in infinite dimensional spaces. It covers equations with time delay and with impulses, and complements the existing literature in functional differential equations and inclusions. The exposition is devoted to both local and global mild solutions for some classes of functional differential evolution equations and inclusions, and other densely and non-densely defined functional differential equations and inclusions in separable Banach spaces or in Fréchet spaces. The tools used include classical fixed points theorems and the measure-of non-compactness, and each chapter concludes with a section devoted to notes and bibliographical remarks.This monograph is particularly useful for researchers and graduate students studying pure and applied mathematics, engineering, biology and all other applied sciences.

Advanced Functional Analysis

by Eberhard Malkowsky Vladimir Rakočević

Functional analysis and operator theory are widely used in the description, understanding and control of dynamical systems and natural processes in physics, chemistry, medicine and the engineering sciences. Advanced Functional Analysis is a self-contained and comprehensive reference for advanced functional analysis and can serve as a guide for related research. The book can be used as a textbook in advanced functional analysis, which is a modern and important field in mathematics, for graduate and postgraduate courses and seminars at universities. At the same time, it enables the interested readers to do their own research. Features Written in a concise and fluent style Covers a broad range of topics Includes related topics from research

Advanced Fixture Design Method and Its Application

by Guohua Qin

This book uses kinematics, mechanics, mathematics, and so on, to systematically propose the fixturing performance evaluation and fixturing layout planning method. The proposed method is a novel method, including the analysis method of locating determination, the analysis method of workpiece stability, the analysis method of clamping reasonability, the analysis method of workpiece attachment/detachment, the analysis method of locating accuracy, and the planning algorithm of locating point layout, the planning algorithm of clamping force, and so forth. It can enrich and develop the basic theory of computer aided fixture design, change the empirical method of fixture design. The combination of theoretical analysis and mathematical modeling technology can resolve the key problems in the process of fixture design, which will play a certain role in promoting the progress of manufacturing technology, improving the precision and level of product manufacturing, and meeting the higher and higher requirements of mechanical manufacturing industry.

Advanced Fixed Point Theory for Economics

by Andrew McLennan

This book develops the central aspect of fixed point theory – the topological fixed point index – to maximal generality, emphasizing correspondences and other aspects of the theory that are of special interest to economics. Numerous topological consequences are presented, along with important implications for dynamical systems.The book assumes the reader has no mathematical knowledge beyond that which is familiar to all theoretical economists. In addition to making the material available to a broad audience, avoiding algebraic topology results in more geometric and intuitive proofs.Graduate students and researchers in economics, and related fields in mathematics and computer science, will benefit from this book, both as a useful reference and as a well-written rigorous exposition of foundational mathematics. Numerous problems sketch key results from a wide variety of topics in theoretical economics, making the book an outstanding text for advanced graduate courses in economics and related disciplines.

Advanced Finite Element Technologies (CISM International Centre for Mechanical Sciences #566)

by Jörg Schröder Peter Wriggers

The book presents an overview of the state of research of advanced finite element technologies. Besides the mathematical analysis, the finite element development and their engineering applications are shown to the reader. The authors give a survey of the methods and technologies concerning efficiency, robustness and performance aspects. The book covers the topics of mathematical foundations for variational approaches and the mathematical understanding of the analytical requirements of modern finite element methods. Special attention is paid to finite deformations, adaptive strategies, incompressible, isotropic or anisotropic material behavior and the mathematical and numerical treatment of the well-known locking phenomenon. Beyond that new results for the introduced approaches are presented especially for challenging nonlinear problems.

Advanced Finite Element Methods with Applications: Selected Papers from the 30th Chemnitz Finite Element Symposium 2017 (Lecture Notes in Computational Science and Engineering #128)

by Thomas Apel Ulrich Langer Arnd Meyer Olaf Steinbach

Finite element methods are the most popular methods for solving partial differential equations numerically, and despite having a history of more than 50 years, there is still active research on their analysis, application and extension. This book features overview papers and original research articles from participants of the 30th Chemnitz Finite Element Symposium, which itself has a 40-year history. Covering topics including numerical methods for equations with fractional partial derivatives; isogeometric analysis and other novel discretization methods, like space-time finite elements and boundary elements; analysis of a posteriori error estimates and adaptive methods; enhancement of efficient solvers of the resulting systems of equations, discretization methods for partial differential equations on surfaces; and methods adapted to applications in solid and fluid mechanics, it offers readers insights into the latest results.

Advanced Finite Element Methods and Applications (Lecture Notes in Applied and Computational Mechanics #66)

by Thomas Apel Olaf Steinbach

This volume on some recent aspects of finite element methods and their applications is dedicated to Ulrich Langer and Arnd Meyer on the occasion of their 60th birthdays in 2012. Their work combines the numerical analysis of finite element algorithms, their efficient implementation on state of the art hardware architectures, and the collaboration with engineers and practitioners. In this spirit, this volume contains contributions of former students and collaborators indicating the broad range of their interests in the theory and application of finite element methods.Topics cover the analysis of domain decomposition and multilevel methods, including hp finite elements, hybrid discontinuous Galerkin methods, and the coupling of finite and boundary element methods; the efficient solution of eigenvalue problems related to partial differential equations with applications in electrical engineering and optics; and the solution of direct and inverse field problems in solid mechanics.

Advanced Field-Solver Techniques for RC Extraction of Integrated Circuits

by Wenjian Yu Xiren Wang

Resistance and capacitance (RC) extraction is an essential step in modeling the interconnection wires and substrate coupling effect in nanometer-technology integrated circuits (IC). The field-solver techniques for RC extraction guarantee the accuracy of modeling, and are becoming increasingly important in meeting the demand for accurate modeling and simulation of VLSI designs. Advanced Field-Solver Techniques for RC Extraction of Integrated Circuits presents a systematic introduction to, and treatment of, the key field-solver methods for RC extraction of VLSI interconnects and substrate coupling in mixed-signal ICs. Various field-solver techniques are explained in detail, with real-world examples to illustrate the advantages and disadvantages of each algorithm.This book will benefit graduate students and researchers in the field of electrical and computer engineering as well as engineers working in the IC design and design automation industries.Dr. Wenjian Yu is an Associate Professor at the Department of Computer Science and Technology at Tsinghua University in China; Dr. Xiren Wang is a R&D Engineer at Cadence Design Systems in the USA.

Advanced Euclidean Geometry

by Roger A. Johnson

For many years, this elementary treatise on advanced Euclidean geometry has been the standard textbook in this area of classical mathematics; no other book has covered the subject quite as well. It explores the geometry of the triangle and the circle, concentrating on extensions of Euclidean theory, and examining in detail many relatively recent theorems. Several hundred theorems and corollaries are formulated and proved completely; numerous others remain unproved, to be used by students as exercises.The author makes liberal use of circular inversion, the theory of pole and polar, and many other modern and powerful geometrical tools throughout the book. In particular, the method of "directed angles" offers not only a powerful method of proof but also furnishes the shortest and most elegant form of statement for several common theorems. This accessible text requires no more extensive preparation than high school geometry and trigonometry.

Advanced Engineering Mathematics with Modeling Applications

by S. Graham Kelly

Engineers require a solid knowledge of the relationship between engineering applications and underlying mathematical theory. However, most books do not present sufficient theory, or they do not fully explain its importance and relevance in understanding those applications.Advanced Engineering Mathematics with Modeling Applications employs a balance

Advanced Engineering Mathematics with MATLAB (Advances in Applied Mathematics)

by Dean G. Duffy

Advanced Engineering Mathematics with MATLAB, Fourth Edition builds upon three successful previous editions. It is written for today’s STEM (science, technology, engineering, and mathematics) student. Three assumptions under lie its structure: (1) All students need a firm grasp of the traditional disciplines of ordinary and partial differential equations, vector calculus and linear algebra. (2) The modern student must have a strong foundation in transform methods because they provide the mathematical basis for electrical and communication studies. (3) The biological revolution requires an understanding of stochastic (random) processes. The chapter on Complex Variables, positioned as the first chapter in previous editions, is now moved to Chapter 10. The author employs MATLAB to reinforce concepts and solve problems that require heavy computation. Along with several updates and changes from the third edition, the text continues to evolve to meet the needs of today’s instructors and students.

Advanced Engineering Mathematics with MATLAB (Advances In Applied Mathematics Ser.)

by Dean G. Duffy

Taking a practical approach to the subject, Advanced Engineering Mathematics with MATLAB, Third Edition continues to integrate technology into the conventional topics of engineering mathematics. The author employs MATLAB to reinforce concepts and solve problems that require heavy computation. MATLAB scripts are available for download at www.crcpres

Advanced Engineering Mathematics with MATLAB (Advances in Applied Mathematics)

by Dean G. Duffy

In the four previous editions the author presented a text firmly grounded in the mathematics that engineers and scientists must understand and know how to use. Tapping into decades of teaching at the US Navy Academy and the US Military Academy and serving for twenty-five years at (NASA) Goddard Space Flight, he combines a teaching and practical experience that is rare among authors of advanced engineering mathematics books. This edition offers a smaller, easier to read, and useful version of this classic textbook. While competing textbooks continue to grow, the book presents a slimmer, more concise option. Instructors and students alike are rejecting the encyclopedic tome with its higher and higher price aimed at undergraduates. To assist in the choice of topics included in this new edition, the author reviewed the syllabi of various engineering mathematics courses that are taught at a wide variety of schools. Due to time constraints an instructor can select perhaps three to four topics from the book, the most likely being ordinary differential equations, Laplace transforms, Fourier series and separation of variables to solve the wave, heat, or Laplace's equation. Laplace transforms are occasionally replaced by linear algebra or vector calculus. Sturm-Liouville problem and special functions (Legendre and Bessel functions) are included for completeness. Topics such as z-transforms and complex variables are now offered in a companion book, Advanced Engineering Mathematics: A Second Course by the same author. MATLAB is still employed to reinforce the concepts that are taught. Of course, this Edition continues to offer a wealth of examples and applications from the scientific and engineering literature, a highlight of previous editions. Worked solutions are given in the back of the book.

Advanced Engineering Mathematics with MATLAB (Advances in Applied Mathematics)

by Dean G. Duffy

In the four previous editions the author presented a text firmly grounded in the mathematics that engineers and scientists must understand and know how to use. Tapping into decades of teaching at the US Navy Academy and the US Military Academy and serving for twenty-five years at (NASA) Goddard Space Flight, he combines a teaching and practical experience that is rare among authors of advanced engineering mathematics books. This edition offers a smaller, easier to read, and useful version of this classic textbook. While competing textbooks continue to grow, the book presents a slimmer, more concise option. Instructors and students alike are rejecting the encyclopedic tome with its higher and higher price aimed at undergraduates. To assist in the choice of topics included in this new edition, the author reviewed the syllabi of various engineering mathematics courses that are taught at a wide variety of schools. Due to time constraints an instructor can select perhaps three to four topics from the book, the most likely being ordinary differential equations, Laplace transforms, Fourier series and separation of variables to solve the wave, heat, or Laplace's equation. Laplace transforms are occasionally replaced by linear algebra or vector calculus. Sturm-Liouville problem and special functions (Legendre and Bessel functions) are included for completeness. Topics such as z-transforms and complex variables are now offered in a companion book, Advanced Engineering Mathematics: A Second Course by the same author. MATLAB is still employed to reinforce the concepts that are taught. Of course, this Edition continues to offer a wealth of examples and applications from the scientific and engineering literature, a highlight of previous editions. Worked solutions are given in the back of the book.

Advanced Engineering Mathematics with Mathematica

by Edward B. Magrab

Advanced Engineering Mathematics with Mathematica® presents advanced analytical solution methods that are used to solve boundary-value problems in engineering and integrates these methods with Mathematica® procedures. It emphasizes the Sturm–Liouville system and the generation and application of orthogonal functions, which are used by the separation of variables method to solve partial differential equations. It introduces the relevant aspects of complex variables, matrices and determinants, Fourier series and transforms, solution techniques for ordinary differential equations, the Laplace transform, and procedures to make ordinary and partial differential equations used in engineering non-dimensional. To show the diverse applications of the material, numerous and widely varied solved boundary value problems are presented.

Advanced Engineering Mathematics with Mathematica

by Edward B. Magrab

Advanced Engineering Mathematics with Mathematica® presents advanced analytical solution methods that are used to solve boundary-value problems in engineering and integrates these methods with Mathematica® procedures. It emphasizes the Sturm–Liouville system and the generation and application of orthogonal functions, which are used by the separation of variables method to solve partial differential equations. It introduces the relevant aspects of complex variables, matrices and determinants, Fourier series and transforms, solution techniques for ordinary differential equations, the Laplace transform, and procedures to make ordinary and partial differential equations used in engineering non-dimensional. To show the diverse applications of the material, numerous and widely varied solved boundary value problems are presented.

Advanced Engineering Mathematics: A Second Course with MatLab (Advances in Applied Mathematics)

by Dean G. Duffy

Through four previous editions of Advanced Engineering Mathematics with MATLAB, the author presented a wide variety of topics needed by today's engineers. The fifth edition of that book, available now, has been broken into two parts: topics currently needed in mathematics courses and a new stand-alone volume presenting topics not often included in these courses and consequently unknown to engineering students and many professionals. The overall structure of this new book consists of two parts: transform methods and random processes. Built upon a foundation of applied complex variables, the first part covers advanced transform methods, as well as z-transforms and Hilbert transforms--transforms of particular interest to systems, communication, and electrical engineers. This portion concludes with Green's function, a powerful method of analyzing systems. The second portion presents random processes--processes that more accurately model physical and biological engineering. Of particular interest is the inclusion of stochastic calculus. The author continues to offer a wealth of examples and applications from the scientific and engineering literature, a highlight of his previous books. As before, theory is presented first, then examples, and then drill problems. Answers are given in the back of the book. This book is all about the future: The purpose of this book is not only to educate the present generation of engineers but also the next. "The main strength is the text is written from an engineering perspective. The majority of my students are engineers. The physical examples are related to problems of interest to the engineering students." --Lea Jenkins, Clemson University

Refine Search

Showing 53,826 through 53,850 of 54,517 results