Browse Results

Showing 8,401 through 8,425 of 54,412 results

Commuting Nonselfadjoint Operators in Hilbert Space: Two Independent Studies (Lecture Notes in Mathematics #1272)

by Moshe S. Livsic Leonid L. Waksman

Classification of commuting non-selfadjoint operators is one of the most challenging problems in operator theory even in the finite-dimensional case. The spectral analysis of dissipative operators has led to a series of deep results in the framework of unitary dilations and characteristic operator functions. It has turned out that the theory has to be based on analytic functions on algebraic manifolds and not on functions of several independent variables as was previously believed. This follows from the generalized Cayley-Hamilton Theorem, due to M.S.Livsic: "Two commuting operators with finite dimensional imaginary parts are connected in the generic case, by a certain algebraic equation whose degree does not exceed the dimension of the sum of the ranges of imaginary parts." Such investigations have been carried out in two directions. One of them, presented by L.L.Waksman, is related to semigroups of projections of multiplication operators on Riemann surfaces. Another direction, which is presented here by M.S.Livsic is based on operator colligations and collective motions of systems. Every given wave equation can be obtained as an external manifestation of collective motions. The algebraic equation mentioned above is the corresponding dispersion law of the input-output waves.

Compact and Fast Machine Learning Accelerator for IoT Devices (Computer Architecture and Design Methodologies)

by Hantao Huang Hao Yu

This book presents the latest techniques for machine learning based data analytics on IoT edge devices. A comprehensive literature review on neural network compression and machine learning accelerator is presented from both algorithm level optimization and hardware architecture optimization. Coverage focuses on shallow and deep neural network with real applications on smart buildings. The authors also discuss hardware architecture design with coverage focusing on both CMOS based computing systems and the new emerging Resistive Random-Access Memory (RRAM) based systems. Detailed case studies such as indoor positioning, energy management and intrusion detection are also presented for smart buildings.

A Compact Capstone Course in Classical Calculus (Compact Textbooks in Mathematics)

by Peter R. Mercer

This textbook offers undergraduates a self-contained introduction to advanced topics not covered in a standard calculus sequence. The author’s enthusiastic and engaging style makes this material, which typically requires a substantial amount of study, accessible to students with minimal prerequisites. Readers will gain a broad knowledge of the area, with approaches based on those found in recent literature, as well as historical remarks that deepen the exposition. Specific topics covered include the binomial theorem, the harmonic series, Euler's constant, geometric probability, and much more. Over the fifteen chapters, readers will discover the elegance of calculus and the pivotal role it plays within mathematics. A Compact Capstone Course in Classical Calculus is ideal for exploring interesting topics in mathematics beyond the standard calculus sequence, particularly for undergraduates who may not be taking more advanced math courses. It would also serve as a useful supplement for a calculus course and a valuable resource for self-study. Readers are expected to have completed two one-semester college calculus courses.

Compact Complex Surfaces (Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics #4)

by W. Barth C. Peters A. van Ven

Contents: Introduction. - Standard Notations. - Preliminaries. - Curves on Surfaces. - Mappings of Surfaces. - Some General Properties of Surfaces. - Examples. - The Enriques-Kodaira Classification. - Surfaces of General Type. - K3-Surfaces and Enriques Surfaces. - Bibliography. - Subject Index.

Compact Complex Surfaces (Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics #4)

by Chris Peters W. Barth K. Hulek A.van de Ven

In the 19 years which passed since the first edition was published, several important developments have taken place in the theory of surfaces. The most sensational one concerns the differentiable structure of surfaces. Twenty years ago very little was known about differentiable structures on 4-manifolds, but in the meantime Donaldson on the one hand and Seiberg and Witten on the other hand, have found, inspired by gauge theory, totally new invariants. Strikingly, together with the theory explained in this book these invariants yield a wealth of new results about the differentiable structure of algebraic surfaces. Other developments include the systematic use of nef-divisors (in ac­ cordance with the progress made in the classification of higher dimensional algebraic varieties), a better understanding of Kahler structures on surfaces, and Reider's new approach to adjoint mappings. All these developments have been incorporated in the present edition, though the Donaldson and Seiberg-Witten theory only by way of examples. Of course we use the opportunity to correct some minor mistakes, which we ether have discovered ourselves or which were communicated to us by careful readers to whom we are much obliged.

Compact Convex Sets and Boundary Integrals (Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge #57)

by Erik M. Alfsen

The importance of convexity arguments in functional analysis has long been realized, but a comprehensive theory of infinite-dimensional convex sets has hardly existed for more than a decade. In fact, the integral representation theorems of Choquet and Bishop -de Leeuw together with the uniqueness theorem of Choquet inaugurated a new epoch in infinite-dimensional convexity. Initially considered curious and tech­ nically difficult, these theorems attracted many mathematicians, and the proofs were gradually simplified and fitted into a general theory. The results can no longer be considered very "deep" or difficult, but they certainly remain all the more important. Today Choquet Theory provides a unified approach to integral representations in fields as diverse as potential theory, probability, function algebras, operator theory, group representations and ergodic theory. At the same time the new concepts and results have made it possible, and relevant, to ask new questions within the abstract theory itself. Such questions pertain to the interplay between compact convex sets K and their associated spaces A(K) of continuous affine functions; to the duality between faces of K and appropriate ideals of A(K); to dominated­ extension problems for continuous affine functions on faces; and to direct convex sum decomposition into faces, as well as to integral for­ mulas generalizing such decompositions. These problems are of geometric interest in their own right, but they are primarily suggested by applica­ tions, in particular to operator theory and function algebras.

A Compact Course on Linear PDEs (UNITEXT #126)

by Alberto Valli

This textbook is devoted to second order linear partial differential equations. The focus is on variational formulations in Hilbert spaces. It contains elliptic equations, including some basic results on Fredholm alternative and spectral theory, some useful notes on functional analysis, a brief presentation of Sobolev spaces and their properties, saddle point problems, parabolic equations and hyperbolic equations. Many exercises are added, and the complete solution of all of them is included. The work is mainly addressed to students in Mathematics, but also students in Engineering with a good mathematical background should be able to follow the theory presented here.

A Compact Course on Linear PDEs (UNITEXT #154)

by Alberto Valli

This textbook is devoted to second order linear partial differential equations. The focus is on variational formulations in Hilbert spaces. It contains elliptic equations, including the biharmonic problem, some useful notes on functional analysis, a brief presentation of Sobolev spaces and their properties, some basic results on Fredholm alternative and spectral theory, saddle point problems, parabolic and linear Navier-Stokes equations, and hyperbolic and Maxwell equations. Almost 80 exercises are added, and the complete solution of all of them is included. The work is mainly addressed to students in Mathematics, but also students in Engineering with a good mathematical background should be able to follow the theory presented here. This second edition has been enriched by some new sections and new exercises; in particular, three important equations are now included: the biharmonic equation, the linear Navier-Stokes equations and the Maxwell equations.

Compact Extended Linear Programming Models (EURO Advanced Tutorials on Operational Research)

by Giuseppe Lancia Paolo Serafini

This book provides a handy, unified introduction to the theory of compact extended formulations of exponential-size integer linear programming (ILP) models. Compact extended formulations are equally powerful, but polynomial-sized, models whose solutions do not require the implementation of separation and pricing procedures. The book is written in a general, didactic form, first developing the background theoretical concepts (polyhedra, projections, linear and integer programming) and then delving into the various techniques for compact extended reformulations. The techniques are illustrated through a wealth of examples touching on many application areas, such as classical combinatorial optimization, network design, timetabling, scheduling, routing, computational biology and bioinformatics. The book is intended for graduate or PhD students – either as an advanced course on selected topics or within a more general course on ILP and mathematical programming – as well as for practitioners and software engineers in industry exploring techniques for developing optimization models for their specific problems.

Compact Lie Groups (Graduate Texts in Mathematics #235)

by Mark R. Sepanski

Blending algebra, analysis, and topology, the study of compact Lie groups is one of the most beautiful areas of mathematics and a key stepping stone to the theory of general Lie groups. Assuming no prior knowledge of Lie groups, this book covers the structure and representation theory of compact Lie groups. Coverage includes the construction of the Spin groups, Schur Orthogonality, the Peter-Weyl Theorem, the Plancherel Theorem, the Maximal Torus Theorem, the Commutator Theorem, the Weyl Integration and Character Formulas, the Highest Weight Classification, and the Borel-Weil Theorem. The book develops the necessary Lie algebra theory with a streamlined approach focusing on linear Lie groups.

Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation

by John C. Nash

This second edition of Compact Numerical Methods for Computers presents reliable yet compact algorithms for computational problems. As in the previous edition, the author considers specific mathematical problems of wide applicability, develops approaches to a solution and the consequent algorithm, and provides the program steps. He emphasizes usefu

Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation

by John C. Nash

This second edition of Compact Numerical Methods for Computers presents reliable yet compact algorithms for computational problems. As in the previous edition, the author considers specific mathematical problems of wide applicability, develops approaches to a solution and the consequent algorithm, and provides the program steps. He emphasizes usefu

Compact Riemann Surfaces: An Introduction to Contemporary Mathematics (Universitext)

by Jürgen Jost

This book is novel in its broad perspective on Riemann surfaces: the text systematically explores the connection with other fields of mathematics. The book can serve as an introduction to contemporary mathematics as a whole, as it develops background material from algebraic topology, differential geometry, the calculus of variations, elliptic PDE, and algebraic geometry. The book is unique among textbooks on Riemann surfaces in its inclusion of an introduction to Teichmüller theory. For this new edition, the author has expanded and rewritten several sections to include additional material and to improve the presentation.

Compact Riemann Surfaces: An Introduction to Contemporary Mathematics (Universitext)

by Jürgen Jost

This book is novel in its broad perspective on Riemann surfaces: the text systematically explores the connection with other fields of mathematics. The book can serve as an introduction to contemporary mathematics as a whole, as it develops background material from algebraic topology, differential geometry, the calculus of variations, elliptic PDE, and algebraic geometry. The book is unique among textbooks on Riemann surfaces in its inclusion of an introduction to Teichmüller theory. For this new edition, the author has expanded and rewritten several sections to include additional material and to improve the presentation.

Compact Riemann Surfaces: An Introduction to Contemporary Mathematics (Universitext)

by Jürgen Jost

This book is novel in its broad perspective on Riemann surfaces: the text systematically explores the connection with other fields of mathematics. The book can serve as an introduction to contemporary mathematics as a whole, as it develops background material from algebraic topology, differential geometry, the calculus of variations, elliptic PDE, and algebraic geometry. The book is unique among textbooks on Riemann surfaces in its inclusion of an introduction to Teichmüller theory. For this new edition, the author has expanded and rewritten several sections to include additional material and to improve the presentation.

A Compactification of the Bruhat-Tits Building (Lecture Notes in Mathematics #1619)

by Erasmus Landvogt

The aim of this work is the definition of the polyhedral compactification of the Bruhat-Tits building of a reductive group over a local field. In addition, an explicit description of the boundary is given. In order to make this work as self-contained as possible and also accessible to non-experts in Bruhat-Tits theory, the construction of the Bruhat-Tits building itself is given completely.

Compactifications of Symmetric and Locally Symmetric Spaces (Mathematics: Theory & Applications)

by Armand Borel Lizhen Ji

Introduces uniform constructions of most of the known compactifications of symmetric and locally symmetric spaces, with emphasis on their geometric and topological structures Relatively self-contained reference aimed at graduate students and research mathematicians interested in the applications of Lie theory and representation theory to analysis, number theory, algebraic geometry and algebraic topology

Compactifications of Symmetric Spaces (Progress in Mathematics #156)

by Yves Guivarc'h Lizhen Ji John C. Taylor

The concept of symmetric space is of central importance in many branches of mathematics. Compactifications of these spaces have been studied from the points of view of representation theory, geometry, and random walks. This work is devoted to the study of the interrelationships among these various compactifications and, in particular, focuses on the martin compactifications. It is the first exposition to treat compactifications of symmetric spaces systematically and to uniformized the various points of view. The work is largely self-contained, with comprehensive references to the literature. It is an excellent resource for both researchers and graduate students.

Compactifying Moduli Spaces (Advanced Courses in Mathematics - CRM Barcelona)

by Paul Hacking Radu Laza Dragos Oprea

This book focusses on a large class of objects in moduli theory and provides different perspectives from which compactifications of moduli spaces may be investigated. Three contributions give an insight on particular aspects of moduli problems. In the first of them, various ways to construct and compactify moduli spaces are presented. In the second, some questions on the boundary of moduli spaces of surfaces are addressed. Finally, the theory of stable quotients is explained, which yields meaningful compactifications of moduli spaces of maps. Both advanced graduate students and researchers in algebraic geometry will find this book a valuable read.

Refine Search

Showing 8,401 through 8,425 of 54,412 results